Extension of Lifespan in C. elegans by Naphthoquinones That Act through Stress Hormesis Mechanisms

نویسندگان

  • Piper R. Hunt
  • Tae Gen Son
  • Mark A. Wilson
  • Quian-Sheng Yu
  • William H. Wood
  • Yongqing Zhang
  • Kevin G. Becker
  • Nigel H. Greig
  • Mark P. Mattson
  • Simonetta Camandola
  • Catherine A. Wolkow
چکیده

Hormesis occurs when a low level stress elicits adaptive beneficial responses that protect against subsequent exposure to severe stress. Recent findings suggest that mild oxidative and thermal stress can extend lifespan by hormetic mechanisms. Here we show that the botanical pesticide plumbagin, while toxic to C. elegans nematodes at high doses, extends lifespan at low doses. Because plumbagin is a naphthoquinone that can generate free radicals in vivo, we investigated whether it extends lifespan by activating an adaptive cellular stress response pathway. The C. elegans cap'n'collar (CNC) transcription factor, SKN-1, mediates protective responses to oxidative stress. Genetic analysis showed that skn-1 activity is required for lifespan extension by low-dose plumbagin in C. elegans. Further screening of a series of plumbagin analogs identified three additional naphthoquinones that could induce SKN-1 targets in C. elegans. Naphthazarin showed skn-1dependent lifespan extension, over an extended dose range compared to plumbagin, while the other naphthoquinones, oxoline and menadione, had differing effects on C. elegans survival and failed to activate ARE reporter expression in cultured mammalian cells. Our findings reveal the potential for low doses of naturally occurring naphthoquinones to extend lifespan by engaging a specific adaptive cellular stress response pathway.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aging, MnSOD, and hormesis mechanisms converge on liver mUPR

www.landesbioscience.com Cell Cycle 3237 Mild stress treatments applied early in adult life, such as heat, irradiation, or reactive oxygen species (ROS) stress, can sometimes increase lifespan, a phenomenon often referred to as “hormesis.” In a recent study, we compared gene expression changes caused by heat, ionizing radiation, hyperoxia, and hydrogen peroxide to changes observed during normal...

متن کامل

Mitochondrial hormesis links low-dose arsenite exposure to lifespan extension

Arsenite is one of the most toxic chemical substances known and is assumed to exert detrimental effects on viability even at lowest concentrations. By contrast and unlike higher concentrations, we here find that exposure to low-dose arsenite promotes growth of cultured mammalian cells. In the nematode C. elegans, low-dose arsenite promotes resistance against thermal and chemical stressors and e...

متن کامل

Bmk-1 regulates lifespan in Caenorhabditis elegans by activating hsp-16

The genetics of aging is typically concerned with lifespan determination that is associated with alterations in expression levels or mutations of particular genes. Previous reports in C. elegans have shown that the bmk-1 gene has important functions in chromosome segregation, and this has been confirmed with its mammalian homolog, KIF11. However, this gene has never been implicated in aging or ...

متن کامل

Determination of the effects of food preservatives benzoic acid and sodium nitrate on lifespan, fertility and physical growth in Caenorhabditis elegans

Presently, the use of protective food additives such as benzoic acid and sodium nitrate is quite common. However, it was found that these additives, which initially appeared to be harmless, led to the emergence of a number of health problems. Cancer and diseases and deaths with no apparent causes are among the leading concerns. Therefore, the studies which can reveal the genotoxic potential of ...

متن کامل

Tomatidine enhances lifespan and healthspan in C. elegans through mitophagy induction via the SKN-1/Nrf2 pathway

Aging is a major international concern that brings formidable socioeconomic and healthcare challenges. Small molecules capable of improving the health of older individuals are being explored. Small molecules that enhance cellular stress resistance are a promising avenue to alleviate declines seen in human aging. Tomatidine, a natural compound abundant in unripe tomatoes, inhibits age-related sk...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011